
Chapter 19: Dependency Injection and Inversion of
Control

Introduction

In modern enterprise Java applications, managing object creation and dependency
management manually becomes complex, rigid, and error-prone as applications grow.
Dependency Injection (DI) and Inversion of Control (IoC) are powerful design principles
that help manage dependencies between classes efficiently, allowing for loose coupling,
greater testability, and flexible architecture. These principles form the backbone of
frameworks like Spring.

This chapter explores what Dependency Injection and Inversion of Control mean, the
various types of dependency injection, their benefits, implementation techniques in Java,
and how frameworks like Spring Framework help manage IoC/DI effectively.

19.1 Understanding Inversion of Control (IoC)

Definition

Inversion of Control refers to the programming principle where the control of object
creation, configuration, and lifecycle is transferred from the program (developer) to a
container or framework.

Example

Without IoC:

javaCopy codeCar car = new Car();

With IoC (managed by framework):

javaCopy codeApplicationContext context = new ClassPathXmlApplicationContext(
"beans.xml");
Car car = context.getBean("car", Car.class);

Here, the control of creating objects is inverted and given to the IoC container.

19.2 What is Dependency Injection (DI)?

Definition

Dependency Injection is a design pattern used to implement IoC, where an object
receives its dependencies from an external source rather than creating them itself.

Real-world Analogy

Think of a television remote (object) that needs batteries (dependency). Instead of the
remote creating batteries, you inject batteries into it.

Why DI?
• Reduces tight coupling

• Improves testability

• Promotes reusability

• Easier maintenance and scalability

19.3 Types of Dependency Injection

1. Constructor Injection

Dependencies are passed via constructor parameters.

javaCopy codeclass Engine {
 public void start() {
 System.out.println("Engine started.");
 }
}

class Car {
 private Engine engine;

 public Car(Engine engine) {
 this.engine = engine;
 }

 public void drive() {
 engine.start();
 System.out.println("Car is driving.");
 }
}

2. Setter Injection

Dependencies are set through public setters.

javaCopy codeclass Car {
 private Engine engine;

 public void setEngine(Engine engine) {
 this.engine = engine;
 }

 public void drive() {
 engine.start();
 System.out.println("Car is driving.");
 }
}

3. Field Injection (used in frameworks like Spring via annotations)

Dependencies are directly injected into fields.

javaCopy codeclass Car {
 @Autowired
 private Engine engine;

 public void drive() {
 engine.start();
 System.out.println("Car is driving.");
 }
}

19.4 Benefits of Using Dependency Injection
• Loose Coupling: Classes don't depend on concrete implementations.

• Reusability: Same components can be used in different contexts.

• Testability: Easier to inject mock dependencies for unit testing.

• Scalability: Applications become easier to expand and modify.

19.5 Implementing DI with Java Without Frameworks

Manual Constructor Injection Example
javaCopy codeclass Service {
 void execute() {

 System.out.println("Executing service...");
 }
}

class Client {
 private Service service;

 public Client(Service service) {
 this.service = service;
 }

 void doWork() {
 service.execute();
 }
}

public class Main {
 public static void main(String[] args) {
 Service service = new Service();
 Client client = new Client(service);
 client.doWork();
 }
}

19.6 Dependency Injection Using Spring Framework

Spring Configuration: XML-based

beans.xml

xmlCopy code<beans>
 <bean id="engine" class="com.example.Engine"/>
 <bean id="car" class="com.example.Car">
 <constructor-arg ref="engine"/>
 </bean>
</beans>

Java Classes

javaCopy codeApplicationContext context = new ClassPathXmlApplicationContext(
"beans.xml");
Car car = context.getBean("car", Car.class);
car.drive();

Spring Annotation-based Configuration
javaCopy code@Component
class Engine {
 public void start() {
 System.out.println("Engine started.");
 }
}

@Component
class Car {
 private final Engine engine;

 @Autowired
 public Car(Engine engine) {
 this.engine = engine;
 }

 public void drive() {
 engine.start();
 System.out.println("Driving...");
 }
}

Main Class

javaCopy codeAnnotationConfigApplicationContext context = new AnnotationConfi
gApplicationContext(AppConfig.class);
Car car = context.getBean(Car.class);
car.drive();

19.7 Common DI Containers in Java
• Spring Framework – most popular IoC container in Java.

• Google Guice – lightweight DI framework by Google.

• Dagger – compile-time DI framework used heavily in Android.

19.8 Key Concepts in IoC/DI Containers
Term Description

Bean An object that is managed by the IoC container.

Container Manages lifecycle and injection of beans (e.g., Spring
ApplicationContext).

Term Description

Autowiring Automatically resolves dependencies using type, name, or constructor.

Scope Defines bean lifecycle – singleton, prototype, request, session, etc.

Configuration Defines beans and wiring (via XML or Java annotations).

19.9 Best Practices for Using DI
• Prefer constructor injection for mandatory dependencies.

• Use interfaces to decouple implementations.

• Avoid field injection in business logic classes.

• Keep configuration centralized and consistent.

• Avoid injecting too many dependencies (violate SRP).

19.10 Pitfalls to Avoid
• Over-injection: Too many dependencies indicate poor class design.

• Incorrect scope management: Singleton vs. prototype confusion.

• Tight framework coupling: Avoid over-reliance on specific annotations for core
logic.

• Silent injection failure: Especially with field injection if not properly
scanned/configured.

Summary

In this chapter, we explored the crucial design principles of Inversion of Control (IoC) and
Dependency Injection (DI), which are foundational to building modular, testable, and
scalable Java applications. These concepts decouple class responsibilities, allow for
flexible architectures, and are core to modern Java frameworks like Spring.

By learning various types of DI – constructor, setter, and field injection – and seeing their
implementation both manually and via Spring, Java developers can build applications with
better maintainability, testability, and scalability. Understanding IoC/DI is vital for
mastering enterprise Java development.

	Chapter 19: Dependency Injection and Inversion of Control
	Introduction
	19.1 Understanding Inversion of Control (IoC)
	Definition
	Example

	19.2 What is Dependency Injection (DI)?
	Definition
	Real-world Analogy
	Why DI?

	19.3 Types of Dependency Injection
	1. Constructor Injection
	2. Setter Injection
	3. Field Injection (used in frameworks like Spring via annotations)

	19.4 Benefits of Using Dependency Injection
	19.5 Implementing DI with Java Without Frameworks
	Manual Constructor Injection Example

	19.6 Dependency Injection Using Spring Framework
	Spring Configuration: XML-based
	Spring Annotation-based Configuration

	19.7 Common DI Containers in Java
	19.8 Key Concepts in IoC/DI Containers
	19.9 Best Practices for Using DI
	19.10 Pitfalls to Avoid
	Summary

